Alon
zbge N (/'6

Foaq ‘;}’%\; K.J. Somaiya College of Engineering, Mumbai-77.

(
Q
€A)

%

‘2 T
(@) g
O)Q . ,b&\o
Ya VioN

MAP Mini-Project

ROBOT MAZE SOLVER

Submitted by:
Roll no: 1912041 Name: Ansh Mehta
Roll no: 1912049 Name: Naisargi Doshi

Aim: To control the robot provided by emu8086 as a virtual device and solve any given maze.

Software Used: emu8086

Theory:
Emu8086 provides various i/o devices via the virtual devices option. This project uses the robot device.
The robot is controlled by sending data to i/o port 9.

E Robot on Port 9 [_ [T =] |

Legend:

ﬁ: @ @ Robot: ﬂ

Wall:

@ Switched-0n Lamp: ®

Switched-Off Lamp: @

&

Fos43218

command: @8AAAAA1

H: @ data: 60000008
status: 000008608

A

— Tool Box

The first byte (port 9) is a command register. set values to this port to make the robot do something.

decimal binary value action
value

0 00000000 do nothing.

1 00000001 move forward.

2 00000010 turn left.
3 00000011 turn right.
4 00000100 examine. examines an object in front using a sensor. when robot

completes the task, result is set to data register and bit #0 of the
status register is set to 1.

5 00000101 switch on a lamp.

6 00000110 switch off a lamp.

The second byte (port 10) is a data register. this register is set after robot completes the examine
command:

decimal value binary value meaning

255 11111111 wall

0 00000000 nothing

7 00000111 switched-on lamp
8 00001000 switched-off lamp

The third byte (port 11) is a status register. read values from this port to determine the state of the robot.
each bit has a specific property:

bit number description

bit #0 zero when there is no new data in data register, one when there is new data in
data register.

bit #1 zero when robot is ready for the next command, one when robot is busy doing
some task.

bit #2 zero when there is no error on last command execution, one when there is an
error on command execution (when robot cannot complete the task: move, turn,
examine, switch on/off lamp).

example:

MOV AL, 1 ; move forward.

OUT 9, AL ;

MOV AL, 3 ; turn right.

OUTO9, AL ;

MOV AL, 1 ; move forward.

OUT 9, AL ;

MOV AL, 2 ; turn left.

OUTO9, AL ;

MOV AL, 1 ; move forward.

OUT 9, AL ;

keep in mind that the robot is a mechanical creature and it takes some time for it to complete a task. you

should always check bit#1 of the status register before sending data to port 9, otherwise the robot will
reject your command and "busy!" will be shown. see robot.asm in c:\emu8086\examples.

Creating Custom Robo-World Map

It is possible to change the default map for the robot using the tool box.

if you click the robot button and place the robot over the existing robot it will turn 90 degrees

counterclockwise. To manually move the robot just place it anywhere else on the map.

If you click the lamp button and click switched-on lamp the lamp will be switched-off, if lamp is already

switched-off it will be deleted. clicking over empty space will create a new switched-on lamp.

Placing wall over existing wall deletes the wall.

Current version is limited to a single robot only. if you forget to place a robot on the map it will be placed
in some random coordinates.

When robot device is closed the map is automatically saved inside this file:
.\emu8086\devices\robot map.data
It is possible to have several maps by renaming and copying this file before starting the robot device.

The right-click over the map brings up a popup menu that allows to switch-on or switch-off all the lamps
at once.

The above theory was mentioned in the documentation of emu8086 under I/O ports and Hardware
Interrupts.

Objective:
The robot provided in emu8086 virtual devices should be able to navigate any given maze given that all
walls of the maze are touching at least one of the outside walls.

Procedure:

1) The documentation provided for the virtual device was understood properly.

2) Basic assembly code was written on emu8086 in accordance with the documentation for testing
purposes.

3) A random maze was made for testing the algorithm used.

4) After multiple iterations, the most reliable algorithm was finalised to be used. The algorithm used
was the left-hand side algorithm for maze solving. Further information about this algorithm and
its implementation can be found further down.

5) Multiple mazes were used to check for errors in the algorithm.

Code:
;Code written by Ansh Mehta and Naisargi Doshi for Microprocessors and Peripherals Mini Project
at K.J. Somaiya College of Engineering, ETRX SY B 2023

;The following code can solve any maze provided:

; The final lamp is touching a wall which can be traced upto the starting position of the robot since
the algorithm follows the LHS wall and navigates accordingly

;NOTE: The code cannot work at high speeds for unknown reasons as of 29 April, 2021. Further
investigation may reveal the cause and solution to this problem, until then,

; users are requested to run the code at a step delay of a minimum of 100ms

;Any suggestions regarding better implementation can be emailed to
ansh.m@somaiya.edu/anshmmehta379@gmail.com

r_portequ9

infinite_loop:
call turn_left
call examine
cmp al,0 ;check value to see if nothing is present
je move_forward
cmp al,255 ;check value to see if wall is present
je alternatel
cmp al,7
jelamp off

alternatel: call turn_right
call examine
cmp al,0 ;check value to see if nothing is present
je move forward
cmp al,255 ;check value to see if wall is present
je alternatel
cmp al,7
je lamp off

lamp_on:call switch_on_ lamp
call turn_right
call turn_right
jmp exit

lamp_off:call switch off lamp
call turn_right
call turn_right
jmp exit

move forward: call move ahead

jmp infinite loop
exit:MOV AH, 0
INT 21H

turn_left proc
call wait_robot
mov al,2
out r_port,al

ret

turn_left endp

turn_right proc

call wait_robot
mov al,3
out r_port,al
ret
turn_right endp

move_ahead proc
call wait_robot
mov al,1
out r_port,al

ret

move_ahead endp

examine proc
call wait_robot
mov al,4
out r_port,al
call wait_exam
in al,r_port+1

ret

examine endp

wait_robot proc

busy: in al, r_port+2
test al, 00000010b
jnz busy

ret

wait_robot endp

wait_exam proc

busy2: in al, r_port+2
test al, 00000001b
jz busy2

ret

wait_exam endp

switch_off lamp proc

call wait_robot
mov al, 6
outr port, al

ret

switch_off lamp endp

switch_on_lamp proc
call wait_robot
mov al, 5
outr port, al

ret

switch_on_lamp endp

Algorithm:

The algorithm used was LHS following for maze solving.

According to this, the maze solving entity should follow the left wall. Limitations of this algorithm are
that it works only when the walls of the maze touch the outer box of the maze.

Flowchart:

Turn Left

'

Examine

No> Turn Right | |<—
Yes l
\J

Move
Forward

If Lamp Off >«—— | Examine | |«— Examine No

| S

Yes

l

1 .

Code Screenshots:

@ edit: C:\Users\anshm\OneDrive - somaiya.edu\KISCE\MAP Sem IV\8086\Maze\Final.asm
file edit

[a] = e] > [~] @ » ?

new open examples compile emulate | calculator convertor | options help

emulator math ascii codes

save

bookmarks assembler help

about

;Code written by Ansh Mehta and Naisargi Doshi for Microprocessors and Peripherals

;The following code can solve any maze provided

I The final lamp is touching a wall which can be traced upto the starting position
sNOTE: The code cannot work at high speeds for unknown reasons as of 29 April,

H users are requested to run the code at a step delay of a minimum of 108

yﬂny "llSlQES'Zlﬂrls regarding better
*_port equ 9
infinite_lo
tlll"ll left
call exanine
cnp al,
je move_foruar
cnp a
Je altel-nat:el
cnp al,
je lamp_off

scheck value to if nothing is present

to if wall is

scheck value present

alternatei: call turn_right
ca

scheck value see if nothing is present

scheck value see if wall is present
Je alterna:el
cmp

§eP13mp 0fs

lanp_onicall switeh on_lanp
all turn_right
call turn_right
Jmp exit
lanp_off:call switch_off_lamp
ca turn_right
call turn_right
Jmp exit
nove_forward: call move_ahead
dnp infinite loop
:HOU M.

INT 21H

turn_left proc
call wait_robot
mov al,2

out r_port.al

ret
turn_left endp
turn_right pr

Gall vait wohot

i

out »_port.al

ret
turn_right endp

drag a file here to open

2@21.
ns

Mini Project at K.J.

of the

@ edit: C:\Users\anshm\OneDrive - somaiya.edu\KISCE\MAP Sem IV\8086\Maze\Final.asm
file edit
B =

emulator math

save

assembler

e =]

examples compile

ascii codes _help

> [~} @ » ?

emulate | calculator convertor | options help

bookmarks

new open about

rohot since the algorithm follows the LHS
Further investigation may reveal the cause and solution to this prob

Somaiya College of Engineering.

implementation can be emailed to ansh.mPsomaiya.edu/anshmmehta3?9@gmail.con

wall and navigates

ETRX SY B 2823

act

call wait_robot
mov al,3
out r_port.al

re
turn_right endp

mnue ahead pr
wait rohnt
muu a L1
out r_port.al

r
move_ahead endp

exanxne pr
ai1”vait_robot
mnu al.4
out r_port.al
call wait_exan
in al,r_port+l

ret
examine endp

wait_rohot proc
busy: in al
test al
gnz

slBﬂB.lﬂh
ret
wait_robot endp

wait_exam proc
busy2: in al, r
test al,
Jz busy?

_port+2
00008001 b

ret

wait_exanm endp

switchoff _lamp proc
wait_robot

mnv al
out »_port, al

ret
switch_off_lamp endp

switch_on_lamp proc
call wait_rohot
mov al,
out »_port, al

ret
suitch_on_lanp endp

drag a file here to open

Output:

mbler

open examples | save

compile

emulate | calculator convertor

a » ?]

options help about

call wait_robot
mov a
out r_port.al

ret
turn_right endp

move_ahead proc
wait_robot
mov al,
out r_port.al

ret
nove_ahead endp

examine pr
cai1”vait_robot
mov al,4
out r_port.al
call wait_exam
in al,r_port+l

ret

examine endp

wait_rohot proc
busy: in al

test al,
Jnz

Elannnmh
ret
wait_robot endp

wait_exam proc

al, r_po
st a1 Bobaosntn
jz busy2

busy2: in
te

ret
wait_exam endp

switchoff_lanp proc
wait_robot
oy a
out r_port, al

ret
switch_off_lamp endp
suitchoon_lanp proc
11 wait_robot
nov aly §
out »_port, al

ret
switch_on_lamp endp

robot on port 9 @

a: data:
status:

drag a file here to open

command :

76543216 port
00000011 9
00000111 18
oopeeee1 11

]
e
3 | 2

2

e

exit:MOU AH,
INT 21H

turn_left proc
call wait_robot
mov al,

out »_port,al

ret
turn_left endp

turn_right proc
call wait_robot
mov al,3

out »_port,al

re
turn_right endp

nove _ahead proc
call wait_rohot
nov a

out » _port,al

ove_ahead endp

examine
call wait robot
mov al,

out r_port,al

o) +

= X
| ® emulator: Fina - o X
file math deb v external virtual d es virtual drive help
[~] 4l > » | ﬂ
Load reload step back | single step run step delay ms: 100 =
regaters F400:0204 F480:0204
"3 nn ua . X Py
BX |00 |08 PROGRAM HAS RETURNED CONTROL F
o [00 [op [T THE OPERATING SYSTEM kot
- AL
ox (08 [0 AL
. AL
cs . AL
- AL
P 0204 AL
s [o100 ko -
I+ AL
SP [FFF8 AL
] FazuF ADD IBX + SIJ, AL
P 0606 F4210: 80 900 NULL ADD [BX + SIJ, AL
s [oee0 F4211: @8 000 NULL ADD [BX + SI1, AL
F4212: 88 900 NULL ADD [BX + SI1, AL
DI 0000 F4213: 80 900 NULL ADD [BX + SI1, AL
F4214: 80 900 NULL ADD [BX + SI1, AL
ps 0100 F4215: 00 090 NULL ~ =

screen | source reset vars debug stack. flags

A video showing the robot solving the maze:

Limitations:

1) The current algorithm implemented cannot solve all mazes provided to it since it requires all the

walls to be touching the outer box of the arena of the robot.

2) The current code needs to be run with a step delay of 100ms due to the latency in the response of

the robot.

3) The current code is not optimised for time.

Conclusion:

We conclude from this project that a robot can be controlled through a maze using an 8086

microprocessor.

We can successfully control the robot in any given random maze using the microprocessor.

https://drive.google.com/file/d/1hIOkmQNaX8BxEMnUPpwJXO--dVpHu_4W/view?usp=sharing

